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Single roll flow pattern

Parameters controlling 
Mold Flow

• Slab depth and width

• Casting speed

• Argon flow rate

• Nozzle shape
- angle and size of outport
- nozzle bore diameter

• Submergence depth

• Electromagnetic force

Double roll flow pattern

SEN
SEN

Slag

Hook

Ar

Ar
Slag Entrained Slag 

Inclusions

Gas Bubbles

Flow and Particle Transport in Mold
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Water Model Bubble Measurements

Brick 1 Brick 2

Fired B. D. (g/cc) 2.9 2.9

Porosity (%) 16.2 17.6

Modulus of rupture (psi) 1085 1119

Permeability (nPm) 7.52 16.32

Properties of porous MgO refractory brick
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Bubble Size Distributions
in Downward-flowing Water 

• Bubble size and size-range increase with gas flow rate



University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • G. Li & BG Thomas  5

Active Bubble Sites

• Fewer active sites with nonwetting surface coating

• No coating

• With coating
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Relate Gas Flow Rates
in Water Model and Steel Caster

Water flow rate (QW, SLPM) 28.2 32.5 36.8

Liquid velocity in nozzle (UW=US, m/s) 0.96 1.10 1.25

Steel throughput (QS, m3/min) 0.25 0.29 0.33

Casting speed (m/min, 230mm thick x 1500mm wide 0.74 0.85 0.96

Argon flow rate in steel caster (SLPM) 5               9             11
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Bubble Size Prediction in Liquid Steel 

• Comparison of measured and predicted bubble size
• Ar bubble size in steel: larger than air bubble size in water
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Steel Throughput Effect on Argon Bubble Size

• Decreasing water velocity below a critical minimum level 
allows the formation of very large bubbles 
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Bubble Size Distributions for Simulation

• Rosin-Rammler function used to simulate bubble size 
distribution, (from corresponding mass fractions)
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CFD Model (Fluent with k-ε):
Slide-gate, Nozzle & Half Mold

port

98mm

70mm

180mm
submergence

1.46m/min 

75mm
bore
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Velocity Profile and Bubble Concentration of Fluid 
Flow in Nozzle (9SLPM) 

• Recirculation regions: Beneath slide gate and upper ports
• Gas bubbles accumulate in recirculation region
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Simulation Conditions

Mold size 230mm thick x 1570mm wide x 3000mm long

Casting speed 1.46m/min (Average liquid velocity in nozzle: 2m/s)

Submerged Entry Nozzle type Bifurcated

SEN submergence depth 180mm

Nozzle port height x thickness 98mm x 70mm

Nozzle bore diameter 75mm

Nozzle port angle 35 degree downward 

Density of molten steel 7020kg/m3

Viscosity of molten steel 0.0067kg/m·s

Argon gas flow rate 5, 9 and 11 SLPM

Density of argon gas at 1560°C 0.446kg/m3
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Computer simulation

(1s after injection)

Water model

Bubble 
concentration 

(kg/m3)

Velocity vectors Bubble concentration

Slide gate region Port region

5.0E-02
4.4E-02
3.9E-02
3.3E-02
2.8E-02
2.2E-02
1.7E-02
1.1E-02
5.6E-03
0.0E+00

ORIR

Animation
(0.7-3.7s)

Recirculation regions: bubble coalescence

(9 SLPM) 

Animation
(0.7-3.7s)
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Velocity and Bubble Concentration at Nozzle Port

• Stronger steel flow from 
bottom right 
(of right nozzle port)

• More gas exits top right

• Higher gas flow rate 
causes stronger 
asymmetric recirculation 
flow at nozzle outlet port

5SLPM 9SLPM 11SLPM

IR OR

IR OR

Velocity profile

Bubble concentration

<Right port view>
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Flow pattern and Bubble Concentration
(30sec after Gas Injection with 9SLPM)

• Generally double-roll flow pattern, impinging on NF; 
• Some flow up outside wide face, across top surface, and down inside wide face
• results match plant measurements

Top surface

Center plane 
between wide faces Narrow face
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Bubble Concentration in Half Mold
(4sec after Gas Injection)

• Higher bubble concentration near SEN, due to buoyancy force
• Distribution of gas bubbles on the top surface is greatly affected by 

the asymmetric flow at the nozzle outlet port

5SLPM 9SLPM 11SLPM
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Bubble size distribution in mold

30.4sec

Outside

Inside

OutsideInside

Bubble diameter (mm)

video
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Plant Measurements: Nail Board Dip Tests and 
Particle Entrapment in Slab Samples

Test
number

Slab 
thickness

(mm)

Pour 
temperature

(˚C)

Electromagnetic 
current

(A)

Slab 
width
(mm)

Casting 
speed

(m/min)

Argon gas flow 
rate

(SLPM)

Test 1

250 1567 250

1570 1.30
9.60

Test 2 12.20

Test 3
1450 1.34

6.18

Test 4 4.58
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Flow Pattern measured by 
Nail-Board Dip Tests

(3.6% gas) (4.8% gas) 

(7.0% gas) (8.7% gas) 

Increasing gas 
flow rate
Changes flow 
pattern
Asymmetric flow 
across the top 
surface

Flow almost symmetrical

Flow mainly towards IR Flow mainly towards IR

Flow almost symmetrical

2006 tests
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Bubble trapped near 
meniscus (hook) 

1m
m

O
M

Capture at solidification front 
(only if stagnant)

Bubble motion in meniscus region (water model)

Water model
- 36.8 l/min water
- 9 SLPM gas 

Entrapped bubbles revealed 
after scarfing

Flow past solidification front 
affects particle entrapment

video

video

A. Chang & J. Dantzig, UIUC, 2006
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Cross-Flow Velocity Effect on 
Capture of Slag Droplets

Critical downward cross-flow velocity (relative to shell) to capture 
slag droplets in solidifying steel dendritic interface
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Particle distribution beneath slab surface 
(ultra-sonic analysis)

0 5 10 15 20 25 30 35 40 45 50 55 60
100

200

300

400

500

600

700

800

900

 

Distance below mold top (m)

Ar gas flow rate
 9.6 l/min (Test 1)
 12.2 l/min (Test 2)

P
a

rt
ic

le
 s

e
c

ti
o

n
 d

ia
m

e
te

r 
(μ

m
)

Distance from sample surface (mm)

0 5 10 15 20 25 30 35 40 45 50 55 60
100

200

300

400

500

600

700

800

900

 

Distance below mold top (m)

Ar gas flow rate
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Distance below mold top (m)

Ar gas flow rate
 9.6 l/min (Test 1)
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Distance below mold top (m)

Ar gas flow rate
 4.58 l/min (Test 4)
 6.18 l/min (Test 3)
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0.12 0.9 3 5 7 10

Straight region
Curved region
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Straight region
Curved region

Distance down caster
- defects in both straight 
and curved regions

not controlled by 
surface hooks or by 
flotation effects

Higher Ar gas flow rate
- More defects on IR

caused by 
asymmetric flow toward 
inside radius
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Conclusions

• Gas exits upper outside-radius corner of nozzle port 
(owing to asymmetric flow inside nozzle)

• Gas rises up outside radius of mold, causing top surface to 
have: high gas concentration at OR and flow towards IR

• Increasing gas flow rate (>9 l/min)
– Flow towards inside radius, confirmed by nail-board measurements
– Causes more particles entrapped, especially on inside radius, 

corresponding to asymmetric flow
– Straight wall until shell is 30mm thick indicates that most defects 

are not due to machine curvature, but due to asymmetric flow

• Asymmetric flow towards one face increases entrapment 
(both frequency and particle size) on that face and 
decreases entrapment on the opposite face

• Particle entrapment seems mainly due to poor / 
asymmetric fluid flow conditions
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